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Topic 6 – Quantum Theory of the Atom
WAVE NATURE OF LIGHT


A. Properties of waves as they relate to light



1. Wave

A constantly repeating change or oscillation in matter or in a physical field



2. Wavelength




a. Definition





The distance between identical points on successive 

waves




b. Symbol 

(



c. Units





(1) Usually nanometers 

[(nm) 1 nm = 1 x 10(9 m]





(2) Sometimes meters (m)



3. Frequency




a. Definition





The number of waves that pass through a given 

point in one unit of time ( usually one second




b. Symbol 

(



c. Units





(1) Reciprocal seconds






s(1




(2) Hertz






Hz = 1
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4. Speed 




a. Definition

The distance a wave travels in one unit of time ( usually one second




b. Symbol





c




c. Speed of light





(1) Depends on the medium

(2) values


2.9979 x 108 m/s

2.9979 x 1017 nm/s

(3) Mathematical relationship


c = ((

B. Light as waves



1. Light is one form of electromagnetic radiation

    
which also includes





radio waves





microwaves





infrared radiation





visible light





ultraviolet radiation





X rays





gamma rays



2. Electromagnetic radiation

a. Has an electric field component and a magnetic field 

    component – hence the term “electromagnetic”

b. The electric field component and the magnetic field 

    component


(1) Travel in mutually perpendicular planes


(2) Have the same wavelength, frequency, and 

                  speed

c. Electromagnetic spectrum


The whole range of wavelengths or frequencies of 

electromagnetic radiation


C. Examples



1. Finding wavelength




A laser used to weld detached retinas has a frequency of 

4.69 x 1014 s(1.  What is the wavelength of its light?


c = ((


(= c/(


( = 
[image: image3.wmf]÷

÷

ø

ö

ç

ç

è

æ

-

1

14

8

s

10

 x 

69

4

s

m

10

 x 

9979

2

.

.



 EMBED Equation.3  [image: image4.wmf]÷

ø

ö

ç

è

æ

-

m

10

 x 

1

1nm

9


             = 639 nm



2. Finding frequency




The light given off by a sodium lamp has a wavelength of 

589 nm.  What is the frequency of this light?


c = ((

( = c/(
( =
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    = 5.09 x 1014 s(1
FROM CLASSICAL PHYSICS TO QUANTUM THEORY


A. Planck’s theory



1. The reason for its development

a. Classical physics assumed that all energy 

    changes were continuous. 

(1) This means that there are no restrictions on the 

      amount of one form of energy which can be 

      converted to another form of energy.



Example:




A ball rolling downhill can change 

any amount of potential energy into kinetic energy.





(2) This meant that atoms and molecules should be 

      able to emit or to absorb any arbitrary amount 

      of energy.




b. The spectrum of light emitted by a hot object – 

    blackbody radiation – could not be explained by 

    classical physics.



2. Planck proposals

a. That energy could only be released or absorbed in 
  

     chunks of some minimum size.

b. That atoms and molecules could only emit or absorb 

    energy in discrete quantities

c. Two comparisons between continuous and discrete


(1) Violin and piano 

A violin can play every pitch between the two notes B and C ( this is continuous.

A piano can only play the pitch for the note B or the pitch for the note C ( this is discrete.





(2) Inclined plane and stairs

A ball can roll down in inclined plane and have any possible height on the plane between the top and the bottom ( this is continuous.

A ball rolling down a flight of stairs can only have certain heights corresponding to the height of the stair it is on at the time ( this is discrete.



3. Planck’s quantum theory




a. The smallest possible increment of energy that can be 

    gained or lost was called a “quantum” (the plural is 

    “quanta”).

b. Radiant energy is always emitted or absorbed in whole 

    number multiples of a constant “h” times the frequency.


(E = h(,  2 h(,  3 h(, …

c. “h” is known as “Planck’s constant” and has the value of 

    6.6262 x 10(34 J(s


B. The photoelectric effect



1. The photoelectric effect could not be explained by classical 

                            physics.


a. The photoelectric effect described



(1) The photoelectric effect is the ejection of 

      electrons from the surface of certain metals 

      when light of at least a certain minimum 

      frequency (called the threshold frequency) 

      was shined upon them.





(2) Whether or not current flowed depended on the 

      frequency of the light NOT its intensity.





(3) Increasing the intensity of the light increased the 

                  amount of the current.



(a) Dim low frequency light




(

 

(



(
     
      No flow of electrons

(b) Intense low frequency light

   


(



(



(
    
       No flow of electrons

(c) Dim high frequency light




(



(



(
      
     Small flow of electrons

(d) Intense high frequency light




(



(



(
            
     Greater flow of electrons




b. Classical physics predicted that intensity should 

    determine the amount of current and that frequency 

    should be irrelevant.



2. Einstein’s use of Planck’s theory to explain the photoelectric 

    effect


a. Einstein’s three assumptions



(1) He assumed that a beam of light is really a 

      stream of particles (now called “photons”).



(2) He assumed that each photon ejects one electron 

                  when it strikes the metal.



(3) He also assumed that this photon must have at 

     least enough energy to free the electron from the 

     forces that hold it in the atom.

b. Using Planck’s constant he calculated the energy of a 

    photon from its frequency.


E = h(
c. Einstein’s explanation using these assumptions:

It does not matter how many photons strike the metal surface if none of them have enough energy to kick out an electron.

If a photon with at least the minimum energy strikes the metal, then that photon is absorbed by the electron.


A certain minimum amount of energy is needed to 


free the electron.


The excess energy, if any, goes into the kinetic 

energy of the electron.



3. Examples




a. Calculating energy from frequency





What is the energy of a X-ray photon with a 

frequency of 6.00 x 1018 s(1?


E = h(
           = (6.6262 x 10(34 J(s)(6.00 x 1018 s(1)



   = 3.98 x 10(15 J




b. Calculating the energy from wavelength





What is the energy of an infrared photon with a 

wavelength of 5.00 x 104 nm?

E = h(
Substituting for ( 
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Since c = 2.9979 x 1017 nm/s

E =  
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E = 3.97 x 10(21 J

C. The emission spectrum of hydrogen

1. The prediction of classical physics and Rutherford’s model of 

    the atom 




a. Has the electrons orbiting around the nucleus where the

   attractive force of the nucleus is exactly balanced by the  

   acceleration due to the circular motion of the electron.

b. The two observed problems with the Rutherford model

(1) The stability of the atom

A charged particle, such as the electron, moving around the nucleus should lose energy and spiral down into the nucleus…in 

about 10(10 s.

(2) The line spectrum of atoms






The electron should be able to lose energy in

any amounts 

Which should produce a continuous spectrum 

(all colors like a rainbow) 

Rather than a line spectrum 

(a set of lines of specific colors)

2. The new model of the atom would use quantum theory.

BOHR’S THEORY OF THE HYDROGEN ATOM

A. Bohr’s Postulates



1. The electron moves in a circular orbit around the proton.

a. These orbits can only have certain radii corresponding to 

    certain definite energies.




b. These energies are given by the equation





En = (RH
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Rydberg developed this from his study of the line spectra of many elements.

RH = 2.179 x 10(18 J 

(the Rydberg constant) 





n = 1, 2, 3, … 

(indicates the energy level of the electron)





The “(” sign indicates that the energy of the 

electron in the atom is lower than the energy of 

a free electron.

c. As the electron gets closer to the nucleus, En increases in 

     absolute value, but becomes more negative.

Think about a ball rolling down a staircase.


When it reaches the lowest step (n = 1) it has its 


lowest potential energy and it is the most stable.




d. Ground state and excited state.





n = 1 is the ground state for the hydrogen electron





n = 2, 3, … are the excited states for the hydrogen 

      electron

2. Transitions of the electron occurs between specific energy states 

    and involves the emission or absorption of a photon of a specific 

    energy and frequency.


B. Bohr’s explanation of the emission spectrum of hydrogen.



 A photon is emitted when an electron transitions from one energy

level to a lower one. 

 (E = Efinal ( Einitial  
 Efinal =  (RH
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C. Bohr’s model completely explained the observed emission spectra of 

     hydrogen, including the Paschen (IR), the Balmer (visible), and the 

     Lyman (UV) series.


D. Example



What is the wavelength of the photon emitted when a hydrogen 

electron transitions from the n = 4 state to the n = 2 state?




RH  = 2.179 x 10(18 J

h =  6.6262 x 10(34 J(s

c = 2.9979 x 1017 nm/s

ninitial = 4

nfinal = 2


1/( = 
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The negative sign comes from the calculation of the energy, indicating that light is emitted.

     

( = 486.2 nm

THE DUAL NATURE OF THE ELECTRON


A. The history of deBroglie’s proposal



1. Physicists accepted Bohr’s model but were puzzled as to why 

    the energy level of the hydrogen atom should be quantized.

2. Einstein has shown that light has both wave properties and 

   particle properties. 

3. deBroglie proposed that particles such as electrons can also 

    posses wave properties under the proper circumstances.


B. deBroglie’s two proposals



1. The first proposal was the standing wave model of the electron




a. An electron bound to the nucleus behaves like a standing

    wave.





(1) A standing wave is similar to plucking the string 

      of a guitar.





(2) These waves get their name from the fact that 

      they are stationary – they do not travel along 

      the string.




b. If the electron behaves like a standing wave then the 

    length of the wave must fit the circumference of the 

    circle (the orbit) exactly, otherwise it would partially 

    cancel itself out. 

c. Since 2( r = the circumference of the orbit, then the 

    wavelengths that will fit are:


 
2( r = (
  
2( r = 2(

  
2( r = 3(

 
2( r = n(


2. The second proposal was that very small particles moving very 

                            fast would exhibit wavelike properties – particularly a 

                            wavelength.


a. This would NOT be observable in the macroscopic world 

                due to the insignificant wavelength.


b. In the submicroscopic world the wavelength could be 

                calculated using:



( =  
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m = mass in kg



v = velocity in m/s

3. Example


What is the wavelength associated with an electron with a

mass of 9.11 x 10(31 kg and a velocity of 4.19 x 106 m/s?  

( =  
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   = 1.74 x 10(10 m


C. Heisenberg’s Uncertainty Principle



1. Because an electron can behave like a wave it is difficult to 

    determine exactly where an electron is.



2. The precise location of a wave cannot be specified because a 

    wave extends out in space.



3. To describe this problem Heisenberg formulated his uncertainty 

                            principle




a. It is impossible to know simultaneously both the exact 

                position and the exact momentum of a particle.




b. There is always a limit to how precisely we can know 

                both values at the same time.




c.  (x(p (
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QUANTUM MECHANICS


A. Formulated by Ernst Schroedinger for the hydrogen atom.


B. The Schroedinger equation incorporates both particle behavior and

                 wave behavior.


C. Solving the Schroedinger equation for a hydrogen atom 



1. Requires advanced calculus even for so simple a system



2. Produces a wave function (


3. Each wave function




a. Specifies the possible energy states that an electron can

    occupy in a hydrogen atom




b. Is characterized by a set of quantum numbers


D. Electron density



1. The square of the wave function (2 gives the probability of 

    finding the electron in a certain region of space at a given 

    instant.



2. Regions of high electron density are areas where there is a high 

    probability of finding the electron.



3. Regions of low electron density are areas where there is a low 

    probability of finding the electron.


E. Orbitals



1. The complete set of solutions to the Schroedinger equation 

    yields a set of wave functions and a corresponding set of 

    energies.



2. Each of these allowed wave functions is called an orbital.



3. Each orbital describes a specific distribution of electron density 

    in space.



4. An atomic orbital describes the region of space where there is a

                            high probability of finding the electron.



5. Each orbital has 




a. A characteristic size




b. A characteristic shape




c. A characteristic orientation in space


F. The many-electron atom



1. The Schroedinger equation for them cannot be solved.



2. The energies and wave functions of the hydrogen atom are a 

    good approximation of the behavior of the electrons in more

   complex atoms.

QUANTUM NUMBERS


A. The principal quantum number



1. Describes the size of the orbital



2. Is symbolized by “n”



3. “n” can have the value of any non-zero integer




n = 1, 2, 3, …



4. These are sometimes referred to as “shells”.



5. Is the quantum number on which the energy of an electron 

    principally but NOT exclusively depends



6. The larger the principal quantum number




a. The greater the average distance of the electron from the

    nucleus




b. The greater the energy of the electron (generally)




c. The less tightly the electron is bound to the nucleus




d. The less stable the condition of having the electron in 

                                        that orbital

B. The angular momentum quantum number



1. Gives the shape of the orbital



2. Is symbolized by “l ”



3. “l ”can have integer values from 0 to n ( 1



4. There are “n” different values for “l ”.



5. Different values of “l ” are usually denoted by letters.





These are from the old spectroscopic terminology




a. 0 = s

(sharp, NOT spread out)




b. 1 = p
(principal, very strong)




c. 2 = d
(diffuse, rather spread out)




d. 3 = f

(fundamental)




e. 4 = g



6. These are sometimes referred to as “sublevels” or as 

                “subshells”.



7. Subshells are designated as the “n” followed by the letter of the 

    subshell




Examples:





1s





4f



8. To whatever extent the energy of an orbital does not depend on 

    the principal quantum number it will depend on the angular 

    momentum quantum number.


C. The magnetic quantum number



1. Gives the orientation of the orbital of the same energy and shape



2. Is symbolized by “ml ”.



3. ml  can have integer values from ( l  to + l .


4. There are 2l  + 1 different values for ml .



5. These are referred to as “orbitals”.


D. The spin quantum number



1. Describes which of the two possible spin orientations of the spin 

                            axis an electron applies



2. Is symbolized by “ms”



3. Can have the values + ½ or ( ½



4. Analogous to the electrons spinning on its axis like the earth




a. A charged particle spinning causes a circulating electric 

    charge.




b. A circulating electric charge generates a magnetic field.




c. The “north pole” can either be pointing up or pointing 

    down.




d. Half of the electrons in a group of hydrogen atoms are 

                pointing one way and half are pointing the other way.


E. Table of Levels, Sublevels, Type of Sublevels, Number of Orbitals, 

                 and Number of Electrons



see the handout with this title

F. Examples



1. How many subshells are there for n = 4?  What are their labels?




“l ” can have “n” values, therefore there are 4 subshells.




They are the 4s, the 4p, the 4d, and the 4f.



2. How many orbitals are there for n = 4?




“l ” can have values from 0 to n ( 1.




ml  = 2l  + 1





l  = 0

ml = 1 value





l  = 1

ml = 3 values





l  = 2  

ml = 5 values





l  = 3

ml = 7 values






                 16 orbitals



3. Which of the following sets are correct designations for 

    subshells?


a. 7s:


s is l  = 0;  since n = 7 then 0 ( n ( 1; OK




b. 5p:


p is l  = 1;  since n = 5 then 1 ( n ( 1;  OK




c. 2d:


d is l  = 2;  since n = 2 then 2 is not less than or 

equal to n ( 1; NOT OK




4. Why is each of these sets of quantum numbers not correct?




a. n = 2, l = 1, ml  = (1, ms = 1






l  ( n ( 1 ?  yes





( l  ( ml  ( + l ?  yes





ms = ( ½ ?  NO




b. n = 3, l = 1, ml  = (2, ms = ( ½





l ( n ( 1?  yes





( l (  ml  ( + l  ?  NO
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